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1. INTRODUCTION   
       The flow through curved a duct shows physically 

interesting features under the action of centrifugal force 

caused by the curvature of the duct. Dean (1927) first 

formulated the problem in mathematical terms under the 

fully developed flow and showed the existence of a pair 

of counter rotating vortices in a curved pipe. The readers 

are referred to Berger et al. (1983) and Yanase et al. 

(2005) for some reviews on curved duct flows. 

          Considering the non-linear nature of the 

Navier-Stokes equation, the existence of multiple 

solutions does not come as a surprise. An early complete 

bifurcation study of two-dimensional (2-D) flow through 

a curved duct of square cross section was conducted by 

Winters (1987). Very recently, Mondal et al. (2007) 

performed comprehensive numerical study on fully 

developed bifurcation structure and stability of 

two-dimensional (2D) flow through a curved duct with 

square cross section and found a close relationship 

between the unsteady solutions and the bifurcation 

diagram of steady solutions. The flow through a curved 

duct with differentially heated vertical sidewalls has 

another aspect because secondary flows promote fluid 

mixing and heat transfer in the fluid (Yanase et al., 2005). 

Recently, Mondal et al. (2008) performed numerical 

investigations of non-isothermal flows through a curved 

duct with square cross section, where they studied the 

flow characteristics with the effects of secondary flows 

on convective heat transfer.  

       One of the interesting phenomena of the flow 

through curved duct is the bifurcation of the flow 

because generally there exist many steady solutions due 

to channel curvature. Recently, Mondal et al. (2009, 

2010) performed numerical prediction of the unsteady 

solutions through a stationary curved square duct flow 

for both the isothermal and non-isothermal flows. They 

showed that periodic solutions turn into chaotic solution 

through a multi-periodic solution, if the Dean number is 

increased no matter what the curvature is.  They also 

showed that the chaotic solution becomes weak for small 

Dean number, while the chaotic solution becomes strong 

for large Dean number. The paper is an attempt to fill up 

the gap with a view to study the non-linear nature of the 

unsteady solutions for strong curvature and large 

pressure gradient, because this type of flow of often 

encountered in engineering applications. 

               In the present study, a numerical result is 

presented for the fully developed two-dimensional flow 

of viscous incompressible fluid through a curved square 

duct of strong curvature. Another objective of the present 

study is to investigate the unsteady flow behavior in the 

presence of buoyancy force. 
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2. MATHEMATICAL FORMULATION 
        Consider a viscous incompressible fluid streaming 

through a curved square duct of curvature 0.5. The 

coordinate system with relevant notations is shown in Fig. 

1. It assumed that the flow is uniform in the z-direction 

and that the outer wall of the duct is heated while the 

inner wall cooled. u, v and w are the velocity components 

in the x-, y- and z-directions, respectively. The variables 

are non-dimensionalized by using the representative 

length and the representative velocity. 

 

 

 

 

 

 

 

 

 

Fig 1. Coordinate system of the curved square duct. 

 

The sectional stream function ( )y,x  is introduced in 

the x- and y- directions as 
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Then the basic equations for ,w and T are derived 

from the Navier-Stockes equations as 
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The non-dimensional parameters Dn, the Dean number, 

Gr , the Grashof number  and Pr ,  the Prandtl number, 

which appear  in equations (2) to (4) are defined as: 
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Here, l is the aspect ratio defined as 
d

h
l and δ is the 

curvature ( 5.0 ). Here l = 1 (square duct).                                    

The boundary conditions for w  and  are used as                   
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and the temperature T  is assumed to be constant on the 

walls as: 

          x)1,x(T,1)y,1(T,1)y,1(T =±==               (6) 

 

3. NUMERICAL CALCULATION 
In order to obtain the numerical solutions, 

spectral method is used. The main objective of the 

method is to use the expansion of the polynomial 

functions that is the variables are expanded in the series 

of functions consisting of Chebyshev polynomials. The 

expansion function )(xn  and  )(xn  are expressed as  
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where ))(coscos()( 1 xnxCn  is the 
thn  order 

Chebyshev polynomial. ),,(),,,( tyxtyxw and 

),,( tyxT  are expanded in terms of the expansion 

functions )(xn  and )(xn  as: 

           

+=

=

=

= =

= =

= =

∑ ∑ x)y()x(T)t,y,,x(T

∑ ∑ ).y()x()t()t,y,x(

∑ ∑ )y()x()t(w)t,y,x(w

M

0m

N

0n
nmnm

M

0m

N

0n
nmnm

M

0m

N

0n
nmnm

 (8)                                                                                                                                                                                                                                                             

where M  and N  are the truncation numbers in the x  

and y  directions respectively. Unsteady solutions are 

obtained by using Crank-Nicolson and Adams-Bashforth 

methods together with the function expansion and 

collocation methods.  

 

4. RESISTANT COEFFICIENT  

The resistant coefficient  is used as the 

representative quantity of the flow state and is generally 

used in fluids engineering, defined as  
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stands for the mean over the cross section of the duct 

and 
*
hd  is the hydraulic diameter. The main axial 

velocity 
*

 is calculated by  

         ( )∫ dyt,y,x∫dx
d24

v 1

1

1
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* =                    (10) 

Since ,/ *
*
2

*
1 GPP z  is related to the mean 

non-dimensional axial velocity     as    
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where v/d2 *= .  

 

5. RESULTS AND DISCUSSION 
 

5.1 Case I: Steady Solution 
       With the present numerical calculation, we obtain 

two branches of steady solutions for the curvature 

5.0  and the Grashof number 100Gr  over the 

Dean number 6500100 Dn . The two steady 

solution branches are named the first steady solution 

branch (first branch, bold solid line) and the second 

steady solution branch (second branch, thin solid line), 

respectively. It should be noted here that Mondal et al. 

(2008) obtained two branches of steady solutions for the 

isothermal flow through a curved square duct with small 

curvature. Figure 3 shows solution structure of the steady 

solutions for the flow through a curved square channel 

with strong curvature. Figure 3 shows contours of 

secondary flow, axial flow and temperature profile at 

some specific values of Dn. 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Steady solution branches for curvature 5.0  

for Gr = 100 
 

       

       

                    
 Dn         5000                    1222                       5000 
 

Fig 3: Secondary flow (top), axial distribution (middle) 

and temperature profile (below) for different Dn 

numbers. 

 

5.2 Case II: Unsteady Solution 

5.2.1. Time evolutions for 44754350 Dn  
         We studied the time evolution of the resistance 

coefficient  for 44404350 Dn . It is found that 

the flow is periodic for all the values of Dn  in this range. 

Figure 4(a) shows that the flow is periodic oscillations 

for Dn = 4350. In order to investigate the periodic 

behavior more clearly, power spectrum of the time 

evaluation for  4350Dn are shown in Figure 4 (b), 

where the line spectra of the fundamental frequency and 

its harmonics are seen, which suggests that the flow is 

periodic for this case. Typical contours of secondary 

flow; axial flow distribution and temperature profiles are 

shown in Figure 4(c) for 4350Dn  for one period of 

oscillation at time 88.7680.76 t . As seen in 

Figures 4(c), the secondary flow is a two -vortex 

solutions for Dn = 4350.  
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    t          76.80                 76.84                  76.88 

Fig 4:  (a) Time evolution of  for 4350Dn at 

time 7876 t  for 5.0  (b) Power spectra of the 

time evolution. (c) Contours of secondary flow, axial 

flow distribution and temperature profiles for 

4350Dn  at time 88.7680.76 t  

 

5.2.2. Time Evolution For 58355075 Dn  

        We perform time evolution of  for 

58355075 Dn . It is found that all the flow 

oscillates irregularly that is the flow is chaotic in this 

range. Figure 5(a) show the instances of chaotic 

oscillations for 5835Dn . In order to investigate the 

chaotic behavior more clearly, power spectra of the time 

evaluation of  for  5835Dn  are shown in Figures 

5(b), where we see that lots of continuous line spectra 

with different frequencies are seen, this result suggests 

that the flow is chaotic. To observe that the change of the 

flow characteristics, contours of typical secondary flow 

patterns, axial distribution and temperature profiles are 

shown in Figure 5(c) for 5835Dn  , where it is seen 

that the chaotic oscillation for 5835Dn  oscillates 

between asymmetric two-vortex solutions.  

. 

 

 

 

 

 

 

 

 

 

 

 (a) 

 

 

 

 

 

 

 

 

 

 

 

   (b) 

 

 

                 

                 

 (c)                  

          t         20.00               20.20                20.40 

Fig 5: (a) Time evolution of  for 5835Dn . (b) 

Power spectra of the time evolution of  for  

5835Dn . (c) Contours of secondary flow, axial flow 

distribution and temperature profiles for 5835Dn . 

 

5.2.3 Time Evolution For 61006080 Dn  

       We studied the time evolution of the resistance 

coefficient  for 61006080 Dn . It is found that 

the flow is multi-periodic for all the values of Dn  in this 

range. In order to investigate the multi-periodic behavior 

more clearly, power spectrum of the time evaluation for 

6100Dn  are shown in Figure 6(b), where the line 

 

T  

w  

 

w  

T  



© ICME2011  TH-038 5 

spectra of the fundamental frequency and the frequencies 

are harmonic which suggests that the flow are 

multi-periodic. To observe that the change of the flow 

characteristics, contours of typical secondary flow 

patterns, axial distribution and temperature profiles are 

shown in Figure 6(c) for   6100Dn , where it is seen 

that the multi-periodic oscillation for 6100Dn  

oscillates  two- vortex  solutions.  
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 (c)            

  t               24.65                24.69              24.71 

Fig 6. (a) Time evolution for 6100Dn (b) Power 

spectra of , (c) Contours of secondary flow, axial flow 

distribution and temperature profiles for 6100Dn  
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(c)              

            t         28.00               28.20                28.40 

Fig 7. (a) Time evolution of  for 6115Dn for 

5.0  (b) Power spectra of the time evolution of  

for 6115Dn  (c) Contours of secondary flow, axial 

flow and temperature profiles for 6115Dn  

 

5.2.4. Time Evolution For 65006115 Dn  

         We increase the Dean number and investigate time 

evolution of   for 65006115 Dn . It is found 

that all the flows oscillate Chaotic in this range. Figure 

7(a) show the instances of chaotic oscillations for 

6115Dn . In order to investigate the chaotic 

behavior more clearly, power spectra of the time 
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evaluation of  for  6115Dn  are shown in Figure 

7(b), we see that lots of continuous line spectra with 

different frequencies are seen, this result suggests that the 

flow is chaotic. To observe that the change of the flow 

characteristics contours of typical secondary flow 

patterns, axial distribution and temperature profiles are 

shown in Figure 7(c)), where it is seen that the Chaotic 

oscillation for 6115Dn  oscillates between 

asymmetric two-,three-and four-vortex solutions 

three-vortex solutions.  

 

6. CONCLUSIONS 
     In this study, a comprehensive numerical result is 

presented for the flow through a curved square channel 

with curvature 0.5 over a wide range of the Dean number 

for the Grashof number 100Gr . Spectral method is 

used as a basic tool to solve the system non-linear 

differential equations. We obtained two branches of 

asymmetric steady solutions with two- and four-vortex 

solutions. It is found that the first branch consists two 

vortex solutions, while the second branch two- and four- 

vortex solutions. In the unstable region, time-evolution 

calculations of the unsteady solutions are performed. 

Time evaluations  calculations as well as their spectra 

analyses show that the steady flow turns into chaos flow 

through periodic or multi-periodic oscillations in the 

straightforward scenario steady-periodic –chaotic , If 

Dn  is increased. It is found that if the Dean number is 

increased, the temperature from heated wall to the fluid 

passed very significantly. Axial flow distribution is 

consistent with the secondary vortices.  It is found that 

the transition to periodic or chaotic state is retarded 

consistently as the curvature is increased. In order to 

investigate the transition from the multi-periodic 

oscillations for the chaotic states in more detail, the 

spectral analysis is found to be very useful. In this regard, 

it is interesting to notice that the chaotic solution 

difference in a small Dean number. When there is no 

stable steady solutions, time evolution of  is obtained 

and it is found in the unstable region the flow undergoes 

through various flow instabilities, if Dn  is increased.  
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